
 

Software Design 
January 27, 2025 

Lumberjack Balancing 
Project Sponsor: Dr. Scot Raab 

Project Mentor: Paul Deasy 
Team Members: Riley Burke, Cristian Marrufo, 

 Sergio Rabadan, Braden Wendt 
 

 
 

 



Table of Contents 
Introduction..................................................................................................................................3 
Implementation Overview........................................................................................................... 4 
Architectural Overview................................................................................................................5 
Module and Interface Descriptions............................................................................................7 

Main Menu Module.................................................................................................................7 
Data Processing Module....................................................................................................... 8 
Display Module...................................................................................................................... 9 

Implementation Plan..................................................................................................................10 
Conclusion................................................................................................................................. 11 

 

2 



Introduction 

Faculty workload management is a critical administrative task in higher education, 
ensuring teaching responsibilities are equitably distributed in compliance with 
institutional policies. At Northern Arizona University (NAU), this process is currently 
performed manually by associate deans, requiring extensive time and effort while being 
prone to errors due to the complexity and volume of data involved. The Lumberjack 
Balancing project aims to automate faculty workload calculations through a software 
solution that improves efficiency, accuracy, and adaptability. Our proposed system is a 
Python-based desktop application designed to streamline the workload assessment 
process. It will automate data extraction from Microsoft Excel files, apply workload 
policies dynamically, and generate accurate workload reports with minimal manual 
intervention. The application will feature a user-friendly interface, enabling non-technical 
administrative staff to easily upload, process, and review faculty workload data. A core 
innovation of this system is its customizable algorithm, which allows associate deans to 
update workload policies directly within an Excel sheet without requiring code 
modifications. This ensures the system remains flexible and adaptable to changes in 
university policies over time. 

Key User-Level Requirements 

● Automated Workload Calculation: Faculty workload assignments will be 
computed based on predefined university policies. 

● User-Friendly Interface: The system will offer intuitive file upload, calculation 
execution, and result generation functionalities. 

● Customizable Workload Rules: Workload distribution parameters will be 
configurable through an Excel sheet, allowing for seamless adjustments. 

● Real-Time Error Checking: The system will validate data inputs to prevent 
inconsistencies and errors in workload distribution. 

● Comprehensive Reporting: Workload summaries will be automatically 
generated and available for export in Excel format. 

The Lumberjack Balancing project presents an innovative and necessary solution to a 
longstanding administrative challenge at NAU. By automating faculty workload 
calculations, reducing errors, and improving efficiency, this system will enhance the 
workload assignment process, allowing associate deans to allocate their time more 
effectively. With its customizable framework, intuitive interface, and robust error 
validation, this solution will provide long-term benefits to NAU’s faculty workload 
management, fostering a more balanced and transparent academic environment. 

 

3 



Implementation Overview 
The Lumberjack Balancing software application has been designed with the ultimate 
purpose of automating and expediting the faculty workload management process, 
circumventing the extensive manual efforts currently in effect. We have designated 
Python as the primary programming language that will serve as the computational 
foundation for the application as it provides many benefits including ease of use, 
versatility, and most importantly, a vast selection of data processing libraries and overall 
capabilities. The application will implement a custom-tailored algorithm which consists 
of several components that work in congruence in order to process the input data and 
report the necessary information before it can be displayed or exported. The format of 
the data that is extracted from the university's database systems is expected to be in 
Microsoft Excel files and should include relevant information pertaining to each faculty 
member such as academic responsibilities, class curriculum, and expected credit hours 
based on the type of class the given faculty member is required to teach. The first step 
of our algorithm is tasked with aggregating the primary constants critical for the 
workload calculation process. As part of this procedure, data is first parsed and 
collected, discarding any irregular or unnecessary values that would hinder the 
efficiency of the operational calculations. To aid in this step, the pandas python library 
will be employed to its full potential, allowing us to manipulate and analyze data while 
remaining flexible enough to account for dynamic changes in the workload policy 
algorithm. The next component of this process will then identify certain predetermined 
edge cases based on the raw input data, prompting special operations that will calculate 
the workload percentage according to specific workload policies that can be dynamically 
altered as desired. The final component of this algorithm will store the critical variables 
in their respective data structures while also delegating specific markers that indicate if 
the final workload percentage falls below or above the designated threshold. 
Throughout this sequence of steps, data is periodically examined and compared to 
ensure it remains in accordance with the provided workload policies and to reduce any 
potential errors that could ruin the integrity of the workload distribution process. In our 
efforts to improve the efficiency and usability of the software, we have concluded that a 
simple and comprehensive user interface is to be implemented. An accessible design 
that follows inherent human-computer interaction principles will allow any user to quickly 
and easily understand the software’s functionality and ultimately reduce any potential 
technical skills requirements that might be introduced otherwise. In order to achieve 
this, the tkinter python library has been identified as the optimal tool for the development 
of the user interface structure. 

 

4 



Architectural Overview 

The software architecture of the Lumberjack Balancing application is divided into three 
main modules or layers, ensuring modularity and some degree of abstraction from the 
previous layers. Each module is intended to conduct a specific function that will then 
support or inform the next module in the architecture while remaining independent for 
the most part. The layers primarily communicate at the point where the main 
functionality of the system is activated, allowing the transfer of raw data selected by the 
user at the user interface level, eventually computing and transforming the data into a 
workload report which only displays what is necessary. The modular architecture design 
will prevent any given issues that might occur at one layer of the system from 
propagating further, this in turn simplifies the error detection and software modification 
process associated with software maintenance. 

Software High-Level Architecture Diagram: 

 

 

 
 
 

5 



1. Main Menu Module: 
The initial module or layer of the architecture which serves as the primary 
method of accessing the software’s functionality. The settings sub-menu and the 
data processing feature can be accessed from here. 
 
1.a) Raw Data:  
The raw data, composed in the excel file format, is input by the user in this 
module. The data is validated to ensure the correct file format is in place before 
further processing. 
 
1.b) Workload Policy: 
This component assumes the excel file format and details necessary variables 
that dictate the mathematical and computational processes of the data 
processing module. The user is able to upload this file into the software’s system 
as indicated by the user interface before moving on to the next module. 
 

2. Data Processing Module: 
The most critical component of the system where the raw data is filtered and 
processed in accordance to the workload policies previously defined. Certain 
edge cases that will modify the computational algorithm are accounted for in this 
module. This module will be essentially invisible to the user after the adequate 
input data has been received. 
 
2.a) Workload Policy: 
The workload policy variables are applied and measured against in this module. 
The validation process for this component is designed to be dynamic, accounting 
for future changes in the workload policy.    
 
2.b) Edge Case Type: 
Edge cases determine how the algorithm calculates and processes the data. The 
type of edge case possessed by the data is identified in this module. 
 

3. Display Module: 
The final layer of the modular software architecture. This component is in charge 
of displaying the final data values presented in a workload report format. Visual 
representations of workload thresholds can be observed in this module. 
Additionally, the user is able to export the workload report in the excel file format 
here. 
 
3.a) Final Workload Report: 

6 



The workload report which contains the finalized workload distribution data 
points. The visual representation is able to be sorted as requested by the user. 

 

Module and Interface Descriptions 
Main Menu Module 

a) The Main Menu Module serves as the primary interaction point for users. It 
facilitates the importation of raw data and workload settings into the system. The 
module handles user input, initiates data validation, and routes the selected input 
files to the Data Processing Module. It ensures that the data is correctly 
formatted before processing. 

b) X 
 

 
 
 
 
 
 

c) Public Interface - Methods: 
● uploadRawData(file_path: str) -> bool 

Uploads faculty workload data from an Excel file. 
Parameters: 

○ file_path (str): Path to the input Excel file. 
Returns: 

○ bool: True if the file was successfully uploaded, False otherwise. 
● uploadCalculationTable(file_path: str) -> bool 

Uploads the Calculations Table for the algorithm 
Parameters: 

7 



○ file_path (str): Path to the input workload report file. 
Returns: 

○ bool: True if the file was successfully uploaded, False otherwise. 
● validateData() -> dict 

Performs initial validation on uploaded files to ensure proper format. 
Returns: 

○ dict: Dictionary containing validation status and errors, if any. 
● proceedToProcessing() -> None 

Sends validated data to the Data Processing Module for further 
calculations. 

Data Processing Module 
a) The Data Processing Module is the core computational engine of the system. It 

takes validated workload data, applies custom workload policies, and accounts 
for edge case types to compute faculty workload allocations. This module runs 
the workload calculation algorithm, ensuring that each faculty member’s assigned 
workload adheres to NAU’s institutional policies. Once processing is complete, 
the module prepares the Final Workload Report to be displayed. 

b)  

 
 
 
 
 
 
 
 
 

c) Public Interface - Methods: 

8 



● loadWorkloadPolicy(file_path: str) -> bool 
Loads an Excel file containing workload policies defining calculation rules. 
Parameters: 

○ file_path (str): Path to the policy file. 
Returns: 

○ bool: True if policies were successfully loaded, False otherwise. 
● loadEdgeCases(file_path: str) -> bool 

Loads a dataset of predefined edge cases for special workload conditions. 
Parameters: 

○ file_path (str): Path to the edge case file. 
Returns: 

○ bool: True if edge cases were successfully loaded, False otherwise. 
● computeWorkload() -> dict 

Executes the faculty workload calculation algorithm. 
Returns: 

○ dict: Dictionary containing faculty workload assignments, warnings, 
and discrepancies. 

● exportFinalWorkloadReport(file_path: str) -> bool 
Saves the final calculated workload report in an Excel format. 
Parameters: 

○ file_path (str): Path where the report should be saved. 
Returns: 

○ bool: True if the report was successfully saved, False otherwise. 

Display Module 
a) The Display Module is responsible for presenting the final workload report to 

users. It enables visualization of workload summaries, including graphical 
indicators for faculty workload distribution (e.g., underloaded, balanced, or 
overloaded). This module also provides export functionalities for generating 
Excel reports. 

b)  

9 



 
 
 
 
 
 
 
 
 
 

 
 
 

c) Public Interface - Methods: 
● loadFinalReport(file_path: str) -> bool 

Loads the final computed workload report for display. 
Parameters: 

○ file_path (str): Path to the generated report file. 
Returns: 

○ bool: True if the report was successfully loaded, False otherwise. 
● displayWorkloadSummary() -> None 

Visualizes key workload insights in a tabular or graphical format. 
● highlightDiscrepancies() -> list 

Identifies and lists discrepancies in workload distribution. 
Returns: 

○ list: List of faculty members with discrepancies. 
● exportReport(file_path: str) -> bool 

Allows users to export the report in a preferred format (e.g., Excel, PDF). 
Parameters: 

○ file_path (str): Destination path for the exported report. 
Returns: 

○ bool: True if export was successful, False otherwise. 

This modular architecture ensures separation of concerns, allowing each component to 
specialize in a specific function while integrating seamlessly with others. The Main 
Menu Module handles user interactions and data validation, the Data Processing 
Module manages computations and policy application, and the Display Module presents 
results in an understandable manner. This design supports scalability, customizability, 
and ease of use, aligning with the project’s objectives. This also allows for easy 
updating for the future stretch goals we plan to implement. 

10 



 

Implementation Plan 
Our implementation timeline focuses on developing each core module of the 
Lumberjack Balancing application in stages, with room for testing and integration at 
each step. Figure 1 shows our Gantt chart, which spans from early February through 
mid-April. The chart identifies five main phases of development, each reflecting major 
modules or milestones in the software architecture: 

 

Phase 1: User Interface (Feb 3 - Feb 10) 
Objectives: 

● Implement a basic but functional GUI 
● Ensure simple navigation and file-upload functionality 
● Validate that the interface can eventually communicate with the backend 

 
Phase 2: Data Processing (Feb 10 - Feb 24) 
Objectives: 

● Develop the parsing logic that reads Excel data and applies preliminary workload 
calculation steps 

● Integrate PANDAS and related data libraries and handle large datasets efficiently 
● Implement consistent error handling for missing/corrupted data 

 
Phase 3: Report Generation (Feb 24 - Mar 3) 
Objections: 

● Implement functionality to produce comprehensive workload reports in Exel format 
● Design adaptable report templates that reflect adjustable policies 
● Create a user-triggered workflow, so that the UI can request a final report (or directly 

generate it) 
 
Phase 4: Testing Period (Mar 3- Mar 17) 
Objectives: 

● Conduct unit, integration, and user acceptance testing across all modules 

11 



● Verify that the data algorithms follow the policies accurately 
● Validate the UI ability to handle various edge cases 

 
Phase 5: Polishing Final Version (Mar 17 - Mar 31) 
Objectives: 

● Address bugs and feedback uncovered during testing 
● Refine UI for better usability and clarity 
● Finalize documentation  

 
Phase 6: Possible Integrations (Apr 1 - May 9) 
Objectives: 

● Identify and evaluate additional feature requests from the client 
● Implement enhancements based on user feedback (if feasible) 
● Conduct targeted testing on new integrations to ensure stability 

 

12 



Conclusion 

The Lumberjack Balancing project represents a significant step forward in automating 
faculty workload management at Northern Arizona University (NAU). By replacing the 
existing manual process with a Python-based software solution, we aim to enhance 
efficiency, reduce errors, and provide a scalable, adaptable system for workload 
calculation and reporting. Through its modular architecture, the application ensures that 
faculty workload data is accurately processed, dynamically adjusted according to 
institutional policies, and presented in an intuitive, user-friendly format. Each component 
of the system—the Main Menu Module, Data Processing Module, and Display 
Module—has been carefully designed to separate concerns, allowing for easy 
maintenance and future scalability. The Main Menu Module serves as the primary 
interface for users, ensuring seamless data input and validation. The Data Processing 
Module executes the core workload calculation algorithm, dynamically adjusting 
assignments based on workload policies and special conditions. Finally, the Display 
Module presents the computed workload distributions in a structured format, providing 
faculty and administrators with actionable insights. The implementation plan outlines a 
phased development approach, ensuring that each component undergoes rigorous 
testing and refinement before full integration. With milestones set for user interface 
development, data processing logic, report generation, and extensive testing, we are 
committed to delivering a robust and user-friendly solution that meets the needs of 
NAU’s administrative staff. Additionally, by designing the system with flexibility in mind, 
future integrations and enhancements can be incorporated to address evolving 
university policies and administrative needs. 

Ultimately, Lumberjack Balancing will transform faculty workload management by 
automating calculations, reducing administrative burdens, and improving accuracy. This 
initiative not only streamlines faculty workload distribution but also fosters greater 
transparency and efficiency, ensuring that NAU’s faculty members receive equitable 
workload assignments that align with institutional policies. With its emphasis on 
customizability, usability, and scalability, this system is poised to become an 
indispensable tool for faculty workload management at NAU. 

 

13 


	Introduction 
	Implementation Overview 
	 
	Architectural Overview 
	 
	Module and Interface Descriptions 
	Main Menu Module 
	Data Processing Module 
	Display Module 

	Implementation Plan 
	 
	Conclusion 

